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Abstract 

Wyckoff positions of centrosymmetric symmorphic 
space groups, if properly interpreted, can be used to 
derive the Bravais classes of modulated crystals. This 
program is worked out here for the incommensurate 
case and assuming that the modulation wave vectors 
are symmetry related, i.e. are (integral combinations 
of) vectors of one star. The corresponding classes are 
called elementary Bravais classes (EBC's). It is shown 
that for three-dimensional crystals the maximal internal 
dimension for these EBC's is nine. It is explained in 
what sense this approach leads to a complete list. 

I. Introduction 

The symmetry of an incommensurate crystal phase is 
very low if one considers only the usual symmetry 
transformations, i.e. the rigid motions. As has been 
shown earlier (de Wolff, Janssen & Janner, 1981, and 
papers cited therein), one can nevertheless use 
crystallographic concepts if one generalizes the notion 
of crystal symmetry. From a certain point of view one 
can consider these generalized symmetry groups as 
crystallographic space groups in a higher-dimensional 
space. This is, however, not the essential point: the 
higher-dimensional space is only introduced for con- 
venience. Anyhow, the introduction of this new type of 
symmetry transformation is very useful in the descrip- 
tion and in the structure determination of incommen- 
surate crystal phases (Yamamoto, 1982). For the latter, 
in particular, it is highly desirable to have a complete 
classification. 

Since the symmetry groups considered here have the 
structure of crystallographic space groups a first step 
towards their classification is the determination of the 
lattice types, i.e. the Bravais classes. If one denotes by d 
the number of additional dimensions, which can be 
interpreted as the number of independent modulation 

0108-7673/83/050667-04501.50 

wave vectors, one wants to know the (3 + d)- 
dimensional Bravais classes corresponding to incom- 
mensurate crystal structures. The latter restriction is 
necessary because using the definition of Bravais class 
as in n-dimensional crystallography one obtains many 
more classes and one does not take into account the 
dimensionality 3 of the crystal. For d smaller than or 
equal to 3 this classification has already been done 
(Janner, Janssen & de Wolff, 1983, here denoted by I) 
and covers all the cases of incommensurate crystals 
known so far. It is to be expected, however, that higher 
internal dimensions also occur in nature. The reason is 
the following. 

Very often a modulated structure originates at a 
phase transition from the condensation of a vibrational 
eigenmode of the crystal. In general there are other 
modes which are symmetry related to the one con- 
sidered and also condense. Two cases are then 
expected: one where point-group-related domains ap- 
pear of single-mode-modulated crystal structures, and a 
second, without domains, where a multi-mode- 
modulated single crystal is observed. If the conden- 
sation occurs at a point with high symmetry in the 
Brillouin zone, the number of condensing modes 
involved is small and the internal dimension required 
will also be small. If, however, the wave vectors of the 
condensing modes are in a general position, their 
number can be as high as 48 in the cubic crystal case 
and can lead to a fairly high internal dimension. 

The number of Bravais classes for each value of the 
internal dimension is finite, but increases substantially 
with increasing value of d. Here we restrict ourselves to 
the Bravais classes of those incommensurate crystal 
structures that originate from one set of symmetry- 
related wave vectors. In solid-state physics these sets 
are known as 'stars'. As in I we call the corresponding 
Bravais classes 'elementary Bravais classes' (EBC's). 
In the present paper we intend to derive a list of all 
EBC's. As explained further on, this goal is achieved in 
a restrictive sense only, which seems, however, to be 
physically reasonable. 
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The EBC's are of course included in the general 
derivation of Bravais classes for an arbitrary dimension 
described in I. Upon analysis of that result it appeared 
that another, more specific way to find EBC's exists, 
using concepts relating to the well-known crystallo- 
graphic Wyckoff positions. This alternative approach is 
set out in the present paper. 

II. The internal dimension of elementary Bravais ' 
classes 

We recall that the diffraction spots of an incommensur- 
ate crystal can be written in the form 

d 

k = ha* + kb* + Ic* + Y mj qj, (1) 
j = l  

where h, k, l and mj are integers and a*, b*, c* basis 
vectors of the lattice A* of main reflections. We denote 
the set of all vectors of the form (1) by M* (I, equation 
2). We recall that an incommensurate crystal belongs 
to an EBC if all d modulation vectors can be generated 
from a single q by transformations belonging to the 
point group K of M*. This means that there are 
elements R t, R2, . . . .  Ra in the point group K such that 

qj-- Rj q. (2) 

Since K is centrosymmetric, in an EBC at most ½m K of 
these operators are needed (m K = order of K). Often d 
is even smaller because of the existence of integral 
linear relations 

Y z j R j = O  (R j inK)  (3) 
J 

corresponding to identities ~jzjqj  = O. 
As an example consider the point group K = mmm. 

I fR  1, R 2, R 3 are rotations by zr around the three binary 
axes, respectively, and E is the unit matrix, one has 

E + R l + R 2 + R 3 = 0 .  (4) 

This relation implies that for each R in K = mmm one 
has 

R = z0(R ) E + Zl(R ) Rt + z2(R ) R 2 (5) 

and that each integral linear combination of vectors Rq 
may be expressed as a linear combination of ql = q, q2 
= R~ q, and q3 = R2q. Therefore, in this case, for a 
vector in general position one finds d = 3, which is 
smaller than half the order (8) of K. 

In this way one can determine the maximal dimen- 
sion d for each of the Laue point groups and for each 
case one can determine d elements Rj ( j  = 1, ..., d) such 
that 

d 

R = y z j ( g ) R j  (6) 
j = l  

for any of the point-group elements R and such that 
there are no relations of the type (3) between them. 

The nine elements of a matrix Rj can also be 
regarded as the components of a vector in nine- 
dimensional space. So any number of R]s larger than 
nine obeys a relation of the type (3). The coefficients zj 
of such a relation can be made integral, because there 
exist bases for which the elements of all R]s are 
integers. It follows that d (being defined as the 
minimum number of q's) cannot exceed nine for any 
EBC. This upper limit actually occurs, namely for a 
general q vector in the cubic system. 

The dimension d may be smaller than the maximal 
one for the point group under consideration if the 
vectors q are in special positions. To see that, it is 
convenient to consider the point pattern of M* as a 
crystal in reciprocal space with lattice A*. Let the 
symmetry of that pattern be described by the (centro- 
symmetrical symmorphic) space group G. Note that its 
point group is the Laue point group K of M* and that 
A* is the lattice of the main reflections of M*. When 
there exist for a specific vector q linear integral 
relations between the vectors R q of the form 

z(R) Rq = t*, integers z(R) and t* in A*, (7) 
R E K  

which are different from (3) and such that one of the 
integers z(R) is equal to one, the dimension d is lower 
than the maximal one for the Laue group under 
consideration. Looking at (7) as an equation to be 
solved for q, for a given t*, we observe that the solution 
should be variable (like 0,x,½) rather than fixed (like 

I 1 0,~,~) because incommensurability requires a variable 
q. 

III. EBC's and Wyckoff positions 

Relations of the type (6) hold when q is in a special 
position ('Wyckoff position') in the space group G 
(with point group K and lattice A*) of the symmorphic 
centrosymmetric type considered here. In that case 
there are elements R of K such that 

R q = q + t*, (8) 

for some t* in A*. These elements form the point 
symmetry group of the Wyckoff position. If one adds 
to this group all corresponding elements - R  one 
obtains again a group which we denote by Hq and 
which consists of all elements R such that 

Rq = +q + t*, (9) 

for some t* in A*. Then one can write 

s 

K =  Z R',,Ho, (10) 
~ = 1  
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which means that each element of K can be written in a 
unique way as the product of an element R~, and an 
element of H a. If now R l and Rj belong to the same 
coset R~, Ha, there is an element T of H a such that R t = 
Rj T and consequently 

qt = Rl q = Rj Tq = +Rj(q + t*) = +qj + t'*. (11)  

In that case one of the qi's may be eliminated from the 
basis set considered in (2). So for wave vectors in 
special Wyckoff positions, the internal dimension can 
be derived step-wise. 

The question then comes up whether each variable 
special position of each centrosymmetrical sym- 
morphic space group G, as listed in International 
Tables for X-ray Crystallography ( 1 9 6 9 )  (IT),  yields 
one EBC. The answer is: yes it does, but sometimes the 
result is equivalent to one or more of the other Wyckoff 
positions. There are three types of such equivalent 
positions. 

Type 1 

Special positions in the orthorhombic case (mmm), 
which result from permutations of x#,z  (three or six 
such positions). 

Example: positions (/), (m) and (q) for G = Pmmm. 

Type 2 

Starting from a special position in a space group G it 
can happen that the actual symmetry group of this 
Wyckoff position contains elements not included in the 
point group but belonging to a bigger group that leaves 
the translations (A*) also invariant. 

Example: position (g) (0,0,z) of G = P4/m clearly 
generates a point set with space group P4/mmm. So 
that is where the resulting EBC belongs. 

Type 3 

Because of the rational independence of the basis 
vectors of M*, integral linear combinations of 
q l , . . . , q d  do not belong to the lattice of main 
reflections. This implies that the vectors q l , . . . ,  
should be rationally independent. If this is not the case 
the vectors a*, b*, e* should be redefined. 

Example 1: position (i) (0,½,z) of G = P4/mmm 
generates a star which has in its span vectors with only 

1 1 rational components: (:q,0) = (½,0,z) + (0,½,-z). If 
one takes for the lattice of main reflections the basis 
(½,½,0), (--t,½,0), (0,0,1) the lattice A* is again tetrag- 
onal and one can choose for characterizing this EBC 

(~,~,z). This case as well the vector q with components 1 
as several others are identifiable in IT because they give 
rise to 'special reflection conditions' for (hkl). 

(~,~,0) Example 2: in G = P6/mmm, the sum vector ~ 
= (½,0,z) + ( 0 , ½ , - z )  for position (i) indicates a rational 

Table 1. Elementary Bravais classes 
Given are the Bravais classes either by their number in the tables of  
I ( f o r  d smaller than four) or by the internal dimension in paren- 
theses. The one-line symbol  of  the Bravais class is the column 
heading followed by the row heading. 

I .  T r i c l i n i c  P [  I I .  M o n o c l i n i c  P2/m B2/m 
(tt,fl, y) 1 - 1  (a , f l ,  O) 1 - 2  1---4 

( a , f l , t )  1 - 3  - 
(0 ,0 ,~ )  1 - 5  I - 7  

(½,0,~) 1-6 - 
(0,½,y) - 1 - 8  

(a,p,r) 2-16 2-17 

I I I .  O r t h o r h o m b i c  Pmmm Immm Cmmm Ammm Fmmm 
( 0 , 0 ,y )  1 - 9  1 - 1 2  1 - 1 3  1 - 1 5  1 - 1 7  

(½,0,y) - - - 1 - 1 6  - 

(O,~,y) I-I0 . . . .  

(½,½,y) 1-11 . . . .  
( 1 , 0 ,y )  - - 1 - 1 4  - 1 - 1 8  

(0,f l ,  y) 2 - 5 0  2 - 5 2  2 - 5 3  2 - 5 4  2 - 5 6  

(½,tiff) 2 - 5 1  - - 2 - 5 5  - 
(ct,/?,y) 3 - 1 4 8  3 - 1 4 9  3 - 1 5 0  - 3 - 1 5 1  

I V .  T e t r a g o n a l  P4/m P4/mmm I4/m I4/mmm 
(0,0,~) - 1-19 - 1 - 2 1  

(½,½,),) - i-2o - - 

(ct,O,O) - 2-63 - 2-67 

(ct,½,0) - 2 - 6 4  - - 

(a ,0,½) - 2 - 6 5  - - 

(a,½,{) - 2 - 6 6  - - 
( c t , a , 0 )  - 2 - 6 8  - 2 - 7 0  

( a , a , ~ )  - 2 - 6 9  - - 

(ct ,ct ,1) - - - 2 - 7 1  

(0,f l ,  y) - 3 - 1 7 7  - 3 - 1 7 9  

(½,fl, y) - 3 - 1 7 8  - - 
(ct,ct,y) - 3 - 1 8 0  - 3 - 1 8 1  

(ct,fl, O) 2 - 5 7  (4)  2 - 5 9  (4 )  

(ct,fl,½) 2 - 5 8  (4)  - - 
(a , f l ,  y) 3 - 1 5 7  (5 )  3 - 1 5 8  (5)  

V .  T r i g o n a l  P3 P3 lm P3m 1 R3 R3m 
(O,O,y) . . . .  1 - 2 2  

(1/3,1/3,y) - 1 - 2 3  - - - 
(ct,O,O) . . . .  2 - 7 9  

( c t , 0 , 1 / 3 )  - - 2 - 7 8  - - 
( a , a , 0 )  . . . .  2 - 7 7  

(ct, t t ,  1 / 3 )  - 2 - 7 6  - - - 
(ct ,fl ,0) - - - 2 - 7 3  - 

( a f t ,  1 / 3 )  2 - 7 2  . . . .  
( a , 0 W )  - - 3 - 1 9 8  - 3 - 1 9 9  

( a , a , y )  - 3 - 1 9 7  - - - 

( a f t ,  y) 3 - 1 8 6  (5)  (5 )  3 - 1 8 7  (5 )  

V I .  H e x a g o n a l  P6/m P6/mmm 
(o,o,),) - 1-24 

(ct,O,O) - 2-82 

(a ,c t ,O)  - 2 - 8 3  

(ct,O,y) - 3 - 2 0 2  
(a,a,y) - 3 - 2 0 3  

(ot,fl,O) 2 - 8 0  (4 )  
(ct,fl, y) 3 - 2 0 0  (5 )  

V I I .  C u b i c  Pm3 Pm3m Im3 lm3m Fm3 Fm3m 
(ct,0,0) - 3 - 2 0 8  - 3 - 2 1 0  - 3 - 2 1 1  

(ct,½,0) 3 - 2 0 4  . . . . .  

(ct, 1 ,0)  . . . .  3 - 2 0 5  

(~t,½,½) - 3 - 2 0 9  . . . .  

(O,fl,fl) - 3-212 - 3-213 - 3-214 
(½,fl+½,fl) 3 - 2 0 6  . . . . .  
( 0 , f l +  1,fl) . . . .  3 - 2 0 7  - 
(ct,ct,ct) - 3 - 2 1 5  - 3 - 2 1 6  - 3 - 2 1 7  

(0,f l ,  y) (6)  (6)  (6 )  (6 )  (6)  (6)  

(½,fl,7) (6)  (6)  . . . .  
( a , a , y )  - (6)  - (6 )  - (6)  

(a , /~ ,y)  (9)  (9)  (9)  (9 )  (9 )  (9)  
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Table 2. Number of  elementary Bravais classes in the 
various crystal systems 

Internal dimension d 1 2 3 4 5 6 9 
System 

Triclinic 1 . . . . . .  
Monoclinic 7 2 . . . . .  
Orthorhombic 10 7 4 . . . .  
Tetragonal 3 12 7 3 2 - - 
Trigonal 2 6 5 - 3 - - 
Hexagonal 1 3 3 1 1 - - 
Cubic - - 14 - - 11 6 

dependence of the basic satellites. Taking for the basis 
vectors of A* the vectors (½,0,0), (0,½,0) and (0,0,1) the 
vector q gets components (0,0,z) and the EBC is 
characterized by these instead of the original ones. In 
all these cases the EBC derived from a Wyckoff 
position is equivalent to one derived from another 
position. 

When comparing the table of EBC's with the special 
positions in IT it should be realized that the row 
headings in the table, which give the components of the 
vector q, refer to reciprocal space whereas the 
components in IT are of vectors in direct space. Thus 
the lattice centerings F and I must be interchanged, as 
well as the designations 3m I and 3 lm. In the tetragonal 
system I remains I but the axes are rotated through 
45 ° . Hexagonal axes make an angle of 60 ° . Compo- 
nents a, fl, y refer to a basis which yields integer 

~,~,0, etc.). centering translations (1,1,0 instead of ~t 
Apart from these changes, EBC's are obtained from the 
special positions in IT just by replacing (x~v,z) by 
(a,~,y). 

vector (a~,?)  gets a rational component (say a = ¼) one 
can redefine A* (take a*/4 instead of a*). Then q has 
components (O,fl, y) and the internal dimension is two 
instead of three. This would imply a constant and very 
abrupt change of the internal dimension within the 
same Wyckoff position. Therefore, it is more con- 
venient to consider these cases as belonging to the same 
EBC: that for the incommensurate value of a. 

A second reason for the change of the EBC when q 
has special values of the components not required by 
the Wyckoff position is the existence of operators 
which are linear combinations of the point-group 
elements and which map a vector q on a reciprocal- 
lattice vector. 

Example: for K = m3 the sum E + R + R 2, where R 
is the threefold rotation around a body diagonal of the 
cubic cell, gives zero when applied to q = (a, fl, - a  - 
fl), although q is not in a special position. In itself the 
resulting equation (7) does not characterize any local 
symmetry in reciprocal space. So from a physical point 
of view the ensuing EBC's may be less stable than those 
generated by special positions, implying a change in the 
local symmetry. For this reason they are omitted for 
d > 3 .  

In the tables the EBC's form a complete list for 
internal dimensions not larger than three, and are those 
derived from Wyckoff positions for all other values of 
d. Each EBC is given either by its number from I (if 
d = 3 or smaller) or by its internal dimension. These are 
arranged in rows and columns. The column headings 
give the point group K and the centering of the lattice 
of main reflections, the rows give the components of 
one vector of the star with respect to a conventional 
basis of A*. The one-line symbol for the EBC follows 
by writing the column heading followed by the row 
heading. 

IV. Tables 

For all Wyckoff positions we have derived the 
nonequivalent EBC's. However, it should be said here 
that in this way one does not obtain a complete list. 
One of the reasons is that if one of the free parameters 
becomes rational, the internal dimension generally 
decreases. For example, if in an orthorhombic case the 
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